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Abstract. Within the McClure mode] a dispersion equation for the energy spectrum of the
Bi-Bi|-xSby superlattices in the envelope function approximation is derived. The effective
mass of minibands, the Fermi energy and the concentration of free carriers in a superlattice
with X = 0.] and the period 4 = 10 nm are determined. The dependence of the miniband
energy upon the ratio r = d'/d7 is cbtained (! is the thickness of the Bi layers and d™ is the
thickness of the alloy layers). It is shown that there is a transition from the semiconducting state
(r < 0.31) to the semimetallic statz (r > 0.31) in the superlattice with X = 0.1 and d = 10 nm
due to an energy overlap between the minibands at the L and T points of the Brillouin zone. For
d' = 4 nm and d" = 6 nm the Fermi surface of electrons is closed whereas the Fermi surface of
holes is open in the direction of the superlattice wavevector ¢. In the superlattice with X = 0.12
and d! = 4% = 60 nm the transverse components of the effective-mass tensor change signs at a
certain value of g = gg. As a result, at ¢ > gp the dependence of the miniband energy on the
wavevector k in the plane of layers has a shape like a ‘camel’s back’.

1. Introduction

The Bi/Sb multilayered structures [1] are of great interest at present. Galvanomagnetic
effects [2] and the Aharonov-Bohm effect [3] were investigated for this quasi-two-
dimensional system. Interface states in the Bi/Bij_yxSby heterojunction were considered
in [4]. The aim of the present paper is to study the energy spectrum of the Bi-Bi;_xSby
compositional superlattices.

The paper is organized as follows. In section 2, information about the energy band
structure of Bi and the Bi;_ySby alloys is given.

In section 3 a dispersion equation for the energy spectrum of the Bi-Bij_xSby
superlattices is derived. At the L point of the Brillouin zone the dispersion equation
is obtained in the envelope function approximation within the McClure [5] model. The
miniband spectrum of heavy holes at T and ¥ is described by the standard dispersion
equation obtained in the effective-mass approximation [6].

In section 4, calculations for superlattices with X = 0.1 and X = 0.12 are made. The
effective mass of minibands, the Fermi energy and the concentration of free carriers in the
superlattice with X = 0.1 and the period 4 = 10 nm are computed. The dependence of
the miniband energy upon the ratio r = d'/d"! is obtained (4 is the thickness of the Bi
layers and 4™ is the thickness of the alloy layers). It is shown that there is a transition from
the semiconducting state (» < 0.31) to the semimetallic state (+ > 0.31) due to an overlap
between the minibands at the L and T points of the Brillouin zone. For d' = 4 nm and
d® = 6 nm the Fermi surface of electrons is closed whereas the Fermi surface of holes is
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Figure 1. Transformation of the band structure of the Bij..x Sbx alloys with variation in the Sb
content X {calculated according to [8-10]). The compositional dependence of the Fermi energy
Er obtained from a solution of the electroneutrality equation (3) is also shown.

open in the direction of the superlattice wavevector g. In the superlattice with X = 0.12
and d' = 4" = 60 nm the transverse components of the effective-mass tensor change signs
at a certain value of g = gp. As aresult, at ¢ > go the dependence of the miniband energy
on the wavevector k in the plane of the layers has a shape like a ‘camel’s back’.

2. Energy band structure of Bi and Bi;._xSbx

The semimetallic properties of Bi are due to the energy overlap between the conduction
band L, and the valence band T (L and T are the symmetry points in the Brillouin zone).
An increase in the Sb content X of the Bij_xSby alloys is followed by inversion of the L,
and L, bands (at X = 0.04) and a semimetal-semiconductor transition (at X = 0.07) due
to the disappearance of the overlap between the L, and T bands [7]. The valence band of
the alloys (X < 0.2) contains light holes at L and heavy holes at T and . The band edges
at T and E vary linearly with X. According to [8,9],

Er =469 - 601.3X . 1
Ex = 359X —70

where the energy in units of millielectronvolts is counted from the middle of the energy
gap at L. The gap value also depends on the Sb content linearly [10]:

Eg. = (10 — 242X) meV. )

Transformation of the energy band structure with variation in the alloy composition in
the range 0 € X < 0.12 calculated on the basis of (1) and (2) is plotted in figure 1. In the
figure the compositional dependence of the Fermi energy Ef obtained from solution of the
electroneutrality equation

n. = pL+ pr+ oz 3

is also plotted.
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Figure 2. Diagram of the band-edge configuration for the Bi~Bij_xSbx compositional
superlattices. The energy is in units of millielectronvolts (the position of the botiom of the
conduction band in Bi is taken as the energy zero). ¢ is a direction perpendicular to the plane
of layers. In the figure, AE, and AL, are the band-edge discontinuities at the L point of the
Brillouin zone; AEr and A Eg are the band-edge discontinuities at T and I, respectively, 47 is
the thickness of the Bi layers and 41 is the thickness of the Bi;_xSby layers.

The energy spectrum of heavy holes at £ is described by the parabolic model with
the density-of-states effective mass m® = 0.9mq [9) (mp is the mass of a free electron).
The spectrurn. of heavy holes at T is described by the same model with the effective-mass
components [11] my = m] = 0.063mg and m; = 0.667my (the z axis is directed along the
trigonal Cy axis). The energy spectrum at L is described by the McClure [5] model:

(E 4 05Ey + 050y y k2 }(E ~ 0.5Eg — 0.50yyk2) = Q2,82 + QK% + QL 1.
()

Here the x axis is parallel to the binary C; axis, the ¥’ axis is about ¢ = 6° from the bisectrix
axis and the z’ axis makes an angle ¢y with the trigonal C; axis; the (J;; are defined by
the velocity matrix elements, o, and o; are the free-electron and far-band coafributions to
the inverse band-edge effective mass of L, and L, respectively, & is the wavevector and E
is the energy taken from the middle of the gap Ey . In the Sb content range 0 < X £ 0.6
[10], Oxx = 0,457 ~ 0.188X, Qyy = 0.03 — 0.04X, Qpy = 0.344, apyy = 1.1 + 0.7X,
oy = 0.615 4- 0.4X (the values are given in atomic units). The tilt angle ¢ decreases
from 6° to zero with increasing Sb content (0 < X £ 0.7) [8].

3. Band structure of the Bi-Bi;_xShx superlattices

On the basis of results mentioned above in section 2, a diagram of the band-edge
configuration for the Bi-Bij_xSby superlattices may be plotted. Let the position of the
bottom of the conduction band in Bi be taken as the energy zero. A starting point for
the construction of the diagram is the condition 38 Eg/3z = O throughout the superlattice
in thermal equilibrium (z is the direction perpendicular to the plane of the layers). Owing
to this condition the band edges in the Bi;_xSby layer shift upwards by AEp relative to
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the position given in figure 1 (A Ep is the difference between the Fermi energy in Bi and
that in Bi}.xSby). The energy band diagram for the Bi-BipeSby; superlattices is plotted
in figore 2. -

At the L point the dispersion relation for the energy spectrum of the Bi-Bi;_xSby
superlattice is derived from solution of the Schrodinger equation using an effective
Hamiltonian of the McClure [5] model and the approach developed in [12],

At low Sb concentrations, the changes in Q;,, @, and «; are negligible compared with
the discontinuity of the band edges in vicinity of the boundary between the layers. If the
superlattice axis z is directed along the trigonal Cs axis, the x axis is parallel to the binary
C, axis and the y axis is parallel to the bisectrix axis (the tilt angle ¢p may be neglected),
the equation has the following form:

Hy—-E 0 Hys Hig $1(r)
0 Hy—E —Hy Hy x2(r) ()
Ha) —~Hyy Hp—E 0 x3(1)
Hay Hi 0 Hy — E xa(r)
Here the x;(r) are the envelopes of the wavefunction,
Hyy = Ea(z) — ouyy 3 /28°
Hy = Ei(2) + ﬂfsyyﬁi_/”‘z
Hz=t-p
Hy=t'+p
Hu=u-p
Hy=u-p ©)

where p = —iR'V, t and u are the velocity matrix elements, and E,{z) and E;(z) are the
band edges of L, and L, respectively.

Equation (5) is equivalent to a set of four homogeneous differential equations. The
substitution of these differential equations into each other leads to the effective equation

{[(0.50tayy V2 + Eu — EX(—0.5055y V5 + Es — E) + Q%, V3 + 0}, V; + 04, V2
+ 0%, (9. /82)(BE,/82)}x () = O @

where Q}j = hz(u}‘uj + /).

Let the envelope function be chosen in the form
x () = exp(ikex + iky ¥} () ®
where
¥ (z) = A" exp(¥z) + B* exp(—«¥z). (9

The superscript ¢¢ = I, II marks the Bi layers (4 = I) and the Bi;_xSby layers (u = II).
Let one of the boundaries be localized at the point z = zp: the range 7o —d' < 7 < 75
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corresponds to the Bi layer with thickness d* whereas the range zg < z < zo+d™ corresponds
to the Bi;_ySby layer with thickness d”. In the range zp —d! < z < 75+ d" we may write

Ey () = Ey o + (Egs — B )0 — Z0). (10
In the vicinity of zg, equation (7) has the form
9% /82% = K¢ (2)8(z — 20) 11
where
K? = (B} - E)(E; - EJ)/ 03, (12)
Within the layer the equation for the envelope function has the form
LAROEICOR (13)
where
(") = [(0.5al, k2 + E¥ — E)(0.50, k2 — EX + E) + (QF k) + (@150 Q. (14)

The boundary condition for the envelope is
¥ (z0) = ¥"(20). as)

The boundary condition for the derivative of the envelope function can be obtained by
integrating (11} with respect to z. The boundary condition for the derivative has the form

(0Y/82):55 — (0¥/82)1<0y = K¥ (20)- (16)

Let us write the boundary conditions (15) and (16) for the points z = d" and z = d,
where d = d' + d" is the period of the superlattice. Then a set of homogeneous equations
for the coefficients A# and B* may be derived if the Bloch condition

y#(z + d) = expligd)¥*(2) (17)

is taken into account (g is the superlattice wavevector). The dispersion equation for the
L-point energy spectrum of the superlattice is governed by the set determinant and has the
form

cos(gd) = cosh(x'd") cosh(x™d™) + 0.5k /™ + &™ /&' — K2 /& c™] sinh(x'd") sinh(x"d™).
(18)
The energy spectrum of heavy holes at T and ¥ is described by the standard dispersion

equation obtained in the effective-mass approximation {6]. For example, the dispersion
equation for holes at T has the form

cos(gd) = 0.5(cX /el — il /el sin(icddh) sinh(xBd™T) + cos(icrd") cosh(iid™) (19)

where

(e)? = (] /mME + (m] /m1)k2 — 2m] E /B
20
) = (m} [mK2 + (m] /mI)E + 2m] /A2 (AEy — E). o

Here AEy is the band-edge discontinuity at the T point (the energy is counted from the
band edge in Bi).
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Figure 3. Energy spectrum of the Bi-BipoSbg. superlattice with the period 4 = 10 nm
(@ = 4 nm and 4" = 6 nm) (a) at the L point and (b) at the T point. The encrgy is
counted from the bottom of the conduction band in Bi. The broken curves show the dependence
of energy on the wavevector component ky.
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Figure 4. The Fermi surfaces of (a) electrons and () holes in the Bi-Bigo8bg, superlattice
with the period 4 = 10 nm (¢’ = 4 nm and a'' = 6 nm).

4. Results of calculations for superlattices with X = 0.1 and X = 0.12

Figure 3 shows the energy spectrum of the Bi-BigsSbp; superiattice with 4 = 10 nm
(d' = 4 nm and d' = 6 nm) calculated on the basis of (18) and (19). Calculations
are made within the limits E! < E < EI. The energy distance between the minibands
Lo and L; is 4.5 meV. At the point L the density-of-states effective mass calculated by
differentiating equation (18) has a value of 0.007mg. Overlap between the minibands
L; and Tp is 13.4 meV. The Fermi energy of electrons obtained from a solution of the
electroneutrality equation at a temperature of 10 K is equal to 12 meV (the Fermi energy
is taken from the bottom of miniband L;). The concentration of free cariers is about
2 x 10'6 em~3. The Fermi surfaces of electrons and holes are shown in figure 4. As one
can see from the fizure, the Fermi surface of electrons is closed whereas the Fermi surface
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Figure 5. Energy spectrum of the Bi-BiggsSbhg.12 superlattice with the period 4 = 120 nm
{d! = a" = 50 nm) at the L point. The energy is counted from the bottom of the conduction
band in Bi. The broken curves show the dependence of energy on the wavevector component
ky.
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Figure 6. Dependence of m; ! (curve 1), m; ! (curve 2)
and m;! (curve 3) on the wavevector g of the Bi—
Big ggSbg 12 superlattice with the period 4 = 120 nm
(@ = d" = 60 nm). Here m; (j = x,y,2) are the
components of the effective-mass tensor of minibands
{a) Lg, (b Lt and (¢} L at k = 0; the m, component

is given in units of free-electron mass my and the mj
qd {j = x, z) components are given in units of 103y,

of holes is open in the direction of the superlattice wavevector g and has the shape of a
goffered cylinder.

The distance between the minibands Ly and L; increases and reaches the value EgL;

n
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the density-of-states effective mass at point L increases also but the overlap between
the minibands L; and T, decreases with decreasing ratio r = d'/d". Because of the
disappearance of overlap at r = 0.31 there is 2 semimetal-semiconductor transition in the
superlattice with X = 0.1 and d = 10 nm.

Calculations for superlattices with a period of about 100 nm show that the effective-mass
components m, and m, of the minibands depend markedly on g. The energy spectrum of
the Bi—Bio.gsSbo.12 superlattice with d' = 4" = 60 nm is shown in figure 5. In figure 6, the
effective-mass components at k = 0 are plotted as a function of the wavevector g of this
superlattice. As one can see from figure 6, the transverse components of the effective-mass
tensor of the minibands Ly and L, change signs at certain value of g = g¢. As a result, at
g > go the dependence of the miniband energy upon the wavevector k in the plane of the
layers has a shape like a ‘camel’s back’.

5. Conclusions

Within the McClare model the energy spectrum of carriers in the Bi-Bij_yShy
compositional superlattices in the envelope function approximation has been obtained. The
Fermi surfaces of electrons and holes have been determined. Components of the effective-
mass tensor have been calculated.
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