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Abstract. Wthin the McClure model a dispersion equation for the energy spectrum of the 
Bi-Bil-xSbx superlaltices in the envelope function approximation is derived. The effective 
mass of minibands. the Fermi energy and the concentration of free carriers in a superlattice 
with X = 0.1 and the period d = IO nm are determined. The dependence of the miniband 
e n w y  upon the mtio r = d'/d" is obtained (d' is the thickness of the Bi layers and d" is the 
thickness of the alloy layers). It is shown that there is a lransition from the semiconducting stale 
(r < 0.31) to the semimetallic state (r > 0.31) in the superlahice wilh X = 0.1 and d = 10 nm 
due to an energy overlap between the minibands at the Land T points of the Brillouin zone. For 
d' = 4 nm and d" = 6 nm the Fermi surface of electrons is closed whereas the Fermi surface of 
holes is open in the direction of lhe superlahice wavevector 9 .  In the superlattice with X = 0.12 
and d' = d" = €4 nm the msverse  components of the effective-mass tensor change signs at a 
cenain value of q = 40. As a result, at q > go the dependence of the miniband energy on the 
wavevector k in the plane of layers has a shape like a 'camel's back'. 

1. Introduction 

The BiISb multilayered sI"Utures [ l ]  are of great interest at present. Galvanomagnetic 
effects [2] and the Aharonov-Bohm effect [3] were investigated for this quasi-two- 
dimensional system. Interface states in the Bi/Bil-xSbx heterojunction were considered 
in [4]. The aim of the present paper is to study the energy spectrum of the Bi-Bi1-xSb.y 
compositional superlattices. 

The paper is organized as follows. In section 2, information about the energy band 
sfmcture of Bi and the Bil-xSbx alloys is given. 

In section 3 a dispersion equation for the energy spectrum of the Bi-Bil-xSbx 
superlattices is derived. At the L point of the Brillouin mne the dispersion equation 
is obtained in the envelope function approximation within the McClure [5 ]  model. The 
miniband spectrum of heavy holes at T and C is described by the standard dispersion 
equation obtained in the effective-mass approximation [6]. 

In section 4, calculations for superlattices with X = 0.1 and X = 0.12 are made. The 
effective mass of minibands, the Fermi energy and the concentration of free carriers in the 
superlattice with X = 0.1 and the period d = 10 nm are computed. The dependence of 
the miniband energy upon the ratio r = d' Idu is obtained (d' is the thickness of the Bi 
layers and dn is the thickness of the alloy layers). It is shown that there is a transition from 
the semiconducting state (r < 0.31) to the semimetallic state (r z 0.31) due to an overlap 
between the minibands at the L and T points of the Brillouin zone. For dl = 4 nm and 
d" = 6 nm the Fermi surface of electrons is closed whereas the Fermi surface of holes is 
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Figure 1. Transformation of the band structure of the Bil-xSbx alloys with variation in the Sb 
content X (calculated according to [8-IO]). The compositional dependence of the Permi energy 
EF obtained from a solution of the electroneutralify equation (3) is also shown. 

open in the direction of the superlattice wavevector q. In the superlattice with X = 0.12 
and d’ = dn = 60 nm the transverse components of the effective-mass tensor change signs 
at a certain value of q = 40. As a result, at q z qo the dependence of the miniband energy 
on the wavevector k in the plane of the layers has a shape like a ‘camel’s back’. 

2. Energy band structure of Bi and Bil-xSbx 

The semimetallic properties of Bi are due to the energy overlap between the conduction 
band L, and the valence band T (L and T are the symmetry points in the Brillouin zone). 
An increase in the Sb content X of the BiImxSbx alloys is followed by inversion of the L, 
and La bands (at X = 0.04) and a semimetal-semiconductor transition (at X = 0.07) due 
to the disappearance of the overlap between the La and T bands 171. The valence band of 
the alloys (X < 0.2) contains light holes at L and heavy holes at T and Z, The band edges 
at T and Z vary linearly with X. According to [8,9], 

ET = 46.9 - 601.3X 

E x  = 3598 - 70 

where the energy in units of millielectronvolts is counted from the middle of the energy 
gap at L. The gap value also depends on the Sb content linearly [lo]: 

E& = (10 - 242X) meV. (2) 

Transformation of the energy band structure with variation in the alloy composition in 
the range 0 < X < 0.12 calculated on the basis of (1) and (2) is plotted in figure 1. In the 
figure the compositional dependence of the Fermi energy EF obtained from solution of the 
electroneutrality equation 

n~ = PL+ pr + Pr (3) 

is also plotted. 



Band structure of Bi-Bil-xSbx superlattices 2041 

7 
d 

I 

Figure 2. Diagram of the band-edge configuration for the Bi-Bij-xSbx compositional 
superlattices. The energy is in units of millielecuonvolts (the position of the bonom of the 
conduction band in Bi is taken as the energy zero). I is a direction perpendicular lo the plme 
of layers. In the figure, AEa and AEs are the band-edge discontinuities at the L point of the 
Brillouin zone; AET and A E x  are lhe band-edge discontinuities at T and E, respectively, d' is 
the thickness of the Bi layers and d" is the thickness of the B i j d b x  layers 

The energy spectrum of heavy holes at E is described by the parabolic model with 
the density-of-states effective mass mE = 0.9mo 191 (mo is the mass of a free electron). 
The spectrum of heavy holes at T is described by the same model with the effective-mass 
components [ I  11 m: = m: = 0.063mo and M: = 0.667mo (the z axis is directed along the 
trigonal Cs axis). The energy spectrum at L is described by the McClure [SI model: 

( E  + O S E a  + O.~CY, , , ,~ ; ) (E  - 0.5& - OS CY^^,,^;) = Q:xk: + Q$,,k,'+ Q:,$:.. 
(4) 

Here the x axis is parallel to the binary Cz axis, the y' axis is about q50 = 6" from the bisectrix 
axis and the z' axis makes an angle $0 with the trigonal C3 axis: the Q,, are defined by 
the velocity matrix elements, aa and CY, are the free-electron and far-band contributions to 
the inverse band-edge effective mass of La and Ls, respectively, k is the wavevector and E 
is the energy taken from the middle of the gap E g ~ .  In the Sb content range 0 < X < 0.6 

 CY,,^,^ = 0.615 + 0.4X (the values are given in atomic units). The tilt angle $0 decreases 
from 6" to zero with increasing Sb content (0 < X < 0.7) 181. 

[IO], Qx, = 0.457 - O.I$$X, Q y y  = 0.03 - O.O4X, Q,,,, = 0.344, aayrY, = 1.1 + 0.7X, 

3. Band structure of the Bi-Bil-xSbx superlattices 

On the basis of results mentioned above in section 2, a diagram of the band-edge 
configuration for the Bi-Bil-xSbx superlattices may be plotted. Let the position of the 
bottom of the conduction hand in Bi be taken as the energy zero. A starting point for 
the construction of the diagram is the condition BEF/Bz = 0 throughout the superlattice 
in thermal equilibrium (z is the direction perpendicular to the plane of the layers). Owing 
to this condition the band edges in the Bil-xSbx layer shift upwards by AEF relative to 
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the position given in figure 1 ( A E F  is the difference between the Fermi energy in Bi and 
that in Bil-xSbx). The energy band diagram for the Bi-Bio,&b.l superlattices is plotted 
in figure 2. 

At the L point the dispersion relation for the energy spectrum of the Bi-Bil&3bx 
superlattice is derived from solution of the Schrodinger equation using an effective 
Hamiltonian of the McClure [5 ]  model and the approach developed in [12]. 

At low Sb concentrations, the changes in QJJ,  as and a, are negligible compared with 
the discontinuity of the band edges in vicinity of the boundary between the layers. If the 
superlattice axis z is directed along the trigonal C3 axis, the x axis is parallel to the binary 
Cz axis and the y axis is parallel to the bisectrix axis (the tilt angle 40 may be neglected), 
the equation has the following form: 

H I  3 

Hit - E  -H41 
-Hi4 H 3 3 - E  0 

0 H33 - E 

Here the xi(?-) are the envelopes of the wavefunction, 

H I ]  = EB(z) - f f a y ~ ? @ ~  

H33 = W Z )  + a,yyB:/z2 

H 1 3 = t * $  

H31 = t’ * f i  
Hi4 = U.  $ 

H41 =u.$ (6) 

where $ = -3V, t and U are the velocity matrix elements, and E,(z) and E,(z )  are the 
band edges of La and L,, respectively. 

Equation (5) is equivalent to a set of four homogeneous differential equations. The 
substitution of these differential equations into each other leads to the effective equation 

~1(0.5aayy Vz + E. - E)(-0.5asyyV; + E6 - E) + Q:zV: + Q$,V; + Q:,V:]’ 

t Q t ( a E , / a z ) ( a E , / a z ) l x ( ~ )  = 0 (7) 

where Q?, = hz(u:uj + f ; i j ) .  
Let the envelope function be chosen in the form 

x ( r )  =exp(ik,x + ik,y)@(z) (8) 

where 

$ F ( z )  = A” exp(d‘z) + B” exp(-lc@z). (9) 

The superscript /.c U). 
Let one of the boundaries be localized at the point z = zo: the range zo - d’ < z < zo 

I, Jl marks the Bi layers (p I) and the Bil-xSbx layers (/.c 
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corresponds to the Bi layer with thicknessdl whereas the range zo < z < zo+dn corresponds 
to the Bil-xSbx layer with thickness d”. In the range zo -d l  < z < zo +d” we may write 

Ea,&) = + (E& - E:,,)B(z - zo). (10) 

a2@/az2 = K @ ( Z ) G ( Z  - ZO) 

K 2  = (E:’ - Ei)(E: - Ef) /Q; , .  

In the vicinity of ZO, equation (7) has the form 

(11) 

where 

(12) 

Within the layer the equation for the envelope function has the form 

v:@”(Z) = (K”)’@”(Z) (13) 

where 

(K’)’ = [ ( 0 . 5 ~ f $ ~ k :  + E r  - E)(O.5~f ,”~~k;  - E,” + E )  + ( Q ~ x k x ) 2  + ( Q & k y ) 2 1 / Q ~ , .  (14) 

The boundary condition for the envelope is 

@“ = @(ZO). 

The boundary condition for the derivative of the envelope function can be obtained by 
integrating (11) with respect to z. The boundary condition for the derivative has the form 

( ~ W ~ Z L ~  - ~ ~ w ~ ~ ~ z ~ z o  = K S ( Z ~ ) .  (16) 

Let us write the boundary conditions (15) and (16) for the points z = d” and z = d, 
where d = d’ + d” is the period of the superlattice. Then a set of homogeneous equations 
for the coefficients A” and BJ’ may be derived if the Bloch condition 

$”(z t d)  = exp(iqd)@”(z) (17) 

is taken into account (q is the superlattice wavevector). The dispersion equation for the 
L-point energy spectrum of the superlattice is govemed by the set determinant and has the 
form 

cos(qd) = COSh(K’d’) COSh(Kndn) + O.5[K1/KI1 f K1’/K1 - K2/K1Kn] Sinh(K’d’) sinh(KndU). 

(18) 

The energy spectrum of heavy holes at T and B is described by the standard dispersion 
equation obtained in the effective-mass approximation [6]. For example, the dispersion 
equation for holes at T has the form 

(19) cos(qd) = O . ~ ( K : / K $  - K:/K,”) sin(K4d’) sinh($d”) + cos(K4d’) cosh(K;d1’) 

where 

(~4)’ = (m:/mT)k: + (m:/m:)k; - 2mfE/h2 
(20) (K:)’ = (m:/m;f)k: + (m:/m:)k$ + (2m, /h  T 2  )(AET - E ) .  

Here AE,  is the band-edge discontinuity at the T point (the energy is counted from the 
band edge in Bi). 
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Figure 3. Energy specbum of the Bi-BosSbm superlattice with the period d = 10 nm 
(d' = 4 nm and d" = 6 nm) (a) at the L point and (b)  at the T pint. The energy is 
counted from the bonom of the conduction band in Bi. The broken ewes show the dependence 
of energy on the wavevector component k,. 

hd 
Figure 4. The Fermi surfaces of (a)  electrons and (b)  holes in the Bi-BiO.9Sba.i superlattice 
with the period d = 10 nm (d' = 4 nm and dIT = 6 nm). 

4. Results of calculations for superlattices with X = 0.1 and X = 0.12 

Figure 3 shows the energy spectrum of the Bi-Bio.9Sbo.l superlattice with d = 10 nm 
(d' = 4 nm and d" = 6 nm) calculated on the basis of (18) and (19). Calculations 
are made within the limits E,' c E c E,". The energy distance between the minibands 
LO and L1 is 4.5 meV. At the point L the density-of-states effective mass calculated by 
differentiating equation (18) has a value of 0.007mo. Overlap between the minibands 
L, and TO is 13.4 meV. The Fermi energy of electrons obtained from a solution of the 
electroneutrality equation at a temperature of 10 K is equal to 12 meV (the Fermi energy 
is taken from the bottom of miniband L1). The concentration of free carriers is about 
2 x 10l6 em-;. The Fermi surfaces of electrons and holes are shown in figure 4. As one 
can see from the figure, the Fermi surface of electrons is closed whereas the Fermi surface 
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Figure 5. Energy specbwn of the Bi-Bia.ggSba.12 superldtice with h e  period d = 120 nm 
(d' = d" = 60 nm) al the L point. The energy is counted from the bottom of the conduction 
band in Bi. The broken curves show the dependence of energy on he wavevector component 
kY. 

Figure 6. Dependence of m;' (curve I) ,  m;' (curve 2 )  
and m;' (curve 3) on the wavevector q of he Bi- 
Biu.mSb0.12 superlanice with he period d = 120 nm 
(d' = d" = 60 nm). Here mi ( j  = x. y ,  z )  are the 
COmpOnentS of h e  effective-mass tensor of minibands 
(4 La, (b) LI and ( e )  L2 af  b = 0; he my component 
is given in units of free-electron mas mu and the mi 
( j  = x, z )  components are given in units of 10-3mo. 

of holes is open in the direction of the superlattice wavevector q and has the shape of a 
goffered cylinder. 

The distance between the minibands LO and L1 increases and reaches the value Egz; 



2046 N B Mustafaev 

the density-of-states effective mass at point L increases also but the overlap between 
the minihands L1 and TO decreases with decreasing ratio r = d'jd". Because of the 
disappearance of overlap at r = 0.31 there is a semimetal-semiconductor transition in the 
superlattice with X = 0.1 and d = 10 nm. 

Calculations for superlattices with a period of about 100 nm show that the effective-mass 
components m, and my of the minibands depend markedly on q .  The energy spectrum of 
the Bi-BL&3b~.ll superlattice with d' = d" = 60 nm is shown in figure 5 .  In figure 6, the 
effective-mass components at k = 0 are plotted as a function of the wavevector q of this 
superlattice. As one can see from figure 6, the transverse components of the effective-mass 
tensor of the minibands Lo and LI change signs at certain value of q = qo. As a result, at 
q z qo the dependence of the miniband energy upon the wavevector k in the plane of the 
layers has a shape like a 'camel's back'. 

5. Conclusions 

Within the McCIure model the energy specwm of carriers in the Bi-Bil-xSbx 
compositional superlattices in the envelope function approximation has been obtained. The 
Fermi surfaces of electrons and holes have been determined. Components of the effective- 
mass tensor have been calculated. 
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